Acta Cryst. (1998). C54, 1273-1275

# A Triangular $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\right]^{4+}$ Complex: Tris-(diethyldithiocarbamato-S, $S^{\prime}$ )tris ( $\mu_{2}-\eta^{2}$ disulfido)( $\mu_{3}$-sulfido)trimolybdenum(IV)( 3 Mo-Mo) Diethyldithiocarbamate 

Hong-Ping Zhu, Chang-Neng Chen, Qu-Tian Liu and Juu-Tong Chen

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's
Republic of China. E-mail: lqt@ms.fjirsm.ac.cn
(Received 3 November 1997; accepted 3 March 1998)

## Abstract

In the cluster cation of the title compound, $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}-\right.$ $\left.\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{3}\right]\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)$, three Mo atoms form an approximately equilateral triangle, with Mo-Mo distances ranging from 2.7140 (5) to 2.7277 (5) $\AA$, and Mo-Mo-Mo angles of $\mathrm{ca} 60^{\circ}$. The triangle is capped by the $\mu_{3}-\mathrm{S}$ atom, and each Mo-Mo bond is bridged by a disulfido group in $\mu_{2}-\eta^{2}$ mode. Diethyldithiocarbamate ligands ( $\mathrm{Et}_{2} \mathrm{dtc}$ ) are chelated to the Mo atoms with an average S—Mo-S bite angle of $69.98(1)^{\circ}$. There is a weak $\mathrm{S} \cdots \mathrm{S}$ interaction between the cluster cation and the anion ( $\mathrm{Et}_{2} \mathrm{dtc}^{-}$).

## Comment

Compounds containing the $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\right]^{4+}$ core have been studied extensively (Müller et al., 1979; Keck et al., 1981). Fedin, Sokolov, Virovets et al. (1991) have synthesized the title compound, (I), using ( $\mathrm{Et}_{4} \mathrm{~N}_{2} \mathrm{Mo}_{3} \mathrm{~S}_{7} \mathrm{Br}$ as the starting material, but the crystal structure of the compound has not yet been reported.

(I)

The structure of complex (I) consists of an $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}-\right.$ $\left(\mathrm{Et}_{2} \mathrm{dtc}_{3}\right]_{3}{ }^{+}$cation and an $\mathrm{Et}_{2} \mathrm{dtc}^{-}$anion (Fig. 1). The cluster cation contains an $\mathrm{Mo}_{3}$ triangle capped by a $\mu_{3}-\mathrm{S}$ atom, with Mo-Mo distances and Mo-MoMo bond angles ranging from 2.7140 (5) to 2.7277 (5) $\AA$
and from 59.68 (1) to $60.18(1)^{\circ}$, respectively. There are three parallel planes in the $\mathrm{Mo}_{3} \mathrm{~S}_{7}$ core: the $\mathrm{Mo}_{3}$ plane, $\mathrm{S} 1 / \mathrm{S} 3 / \mathrm{S} 5$ and $\mathrm{S} 2 / \mathrm{S} 4 / \mathrm{S} 6$, with a maximum dihedral angle of $1.34(3)^{\circ}$. In the three $\mathrm{S}_{2}$ groups, the equatorial S 2 , S4 and S6 atoms, and the axial S1, S3 and S5 atoms, deviate from the $\mathrm{Mo}_{3}$ plane by not more than $0.17 \AA$ for the former, and by not less than $1.63 \AA$ for the latter. The $\mathrm{Mo}_{3} \mathrm{~S}_{7}$ core of the cation has idealized $C_{3 v}$ symmetry, with a $C_{3}$ axis passing through the $\mu_{3}-S$ atom, and this symmetry also includes the $\mathrm{NCS}_{2}$ groups of three $\mathrm{Et}_{2} \mathrm{dtc}^{-}$ligands. All these structural features of the $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\right]^{4+}$ core are very similar to those of other complexes reported with an $\left[M_{3} X_{7}\right]^{n+}$ core, for instance, $M=$ Mo or $\mathrm{W}, X=\mathrm{S}$ or $\mathrm{Se}, n=4$ (Shang et al., 1984; Lu et al., 1994; Fedin, Sokolov, Geras'ko et al., 1991; Fedin, Sokolov, Virovets et al., 1991; Hegetchweiler et al., 1991; Zimmermann et al., 1991) or $M=\mathrm{V}, X=\mathrm{S}$, $n=2$ (Yang et al., 1993; Dean et al., 1993).


Fig. 1. ORTEPII (Johnson, 1976) plot of the molecular structure of $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{Et}_{2} \mathrm{dtc}\right)_{3}\right]\left(\mathrm{Et}_{2} \mathrm{dtc}\right)$, showing $50 \%$ probability displacement ellipsoids. H atoms have been omitted for clarity.

All the $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\right]^{4+}$ cores of these complexes, including (I), exhibit almost the same structural parameters: (i) Mo-Mo distances in the range $2.700-2.782 \AA$ and Mo-Mo-Mo bond angles of ca $60^{\circ}$; (ii) Mo- $\mu_{3}-\mathrm{S}$ bond distances in the range $2.336-2.386 \AA$; (iii) Mo$\mathrm{S}_{\mathrm{cq}}$ distances in the range $2.406-2.416 \AA$ and $\mathrm{Mo}-\mathrm{S}_{\mathrm{ax}}$ distances of 2.487-2.511 $\AA$; (iv) $\mathrm{S}_{\mathrm{cq}}-\mathrm{S}_{\mathrm{ax}}$ distances in the range $2.021-2.069 \AA$.

Compared with the selenium analogue, $\left[\mathrm{Mo}_{3} \mathrm{Se}_{7}-\right.$ $\left.\left(\mathrm{Et}_{2} \mathrm{dtc}\right)_{3}\right]\left(\mathrm{Et}_{2} \mathrm{dtc}\right)$, (II) (Fedin, Sokolov, Geras'ko et al., 1991), complex (I) has an obviously smaller [ $\mathrm{Mo}_{3} \mathrm{~S}_{7}$ ] core than the $\left[\mathrm{Mo}_{3} \mathrm{Se}_{7}\right]$ core of (II). Specifically, all the bond distances in the cluster core of (I) are shorter than those of (II). Examples are: the average MoMo distance [(I) 2.723 ; (II) $2.778 \AA$ A], Mo- $\mu_{3}-X$ [(I) $X=\mathrm{S}, 2.386 \AA$; (II) $X=\mathrm{Se}, 2.498 \AA \mathrm{~A}]$, Mo- $X_{\mathrm{ax}}$ [(I) 2.490; (II) $2.617 \AA$ A and Mo- $X_{\text {eq }}$ [(I) 2.406; (II)
$2.532 \AA$ A]. However, the average $\mathrm{Mo}-\mathrm{S}_{\mathrm{dtc}}$ distance, and the $\mathrm{S}_{\mathrm{dtc}}-\mathrm{Mo}-\mathrm{S}_{\mathrm{dtc}}$ bite angle [(I) $2.504 \AA$ and $69.98^{\circ}$; (II) $2.505 \AA$ and $69.4^{\circ}$ ] are almost in agreement. In addition, similar to the weak $\mathrm{Se} \cdots \mathrm{S}_{\text {anion }}$ bonding found in complex (II), an interaction between the $S_{\text {dtc }}$ atom in the $\mathrm{Et}_{2} \mathrm{dtc}^{-}$anion and the S atom in the cation of (I) has also been observed, with an $\mathrm{S} 42 \cdots \mathrm{~S} 6$ separation of 3.543 (2) Å.

## Experimental

The title compound was obtained as red-brown prismatic crystals, in an attempt to prepare $\mathrm{Mo} / \mathrm{Ag} / \mathrm{S}$ heterometallic cluster compounds. To a mixture of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{MoS}_{4}(0.26 \mathrm{~g}$, $1 \mathrm{mmol}), \mathrm{Ag}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}(1.336 \mathrm{~g}, 2 \mathrm{mmol}), \mathrm{Na}\left(\mathrm{Et}_{2} \mathrm{dtc}\right)(0.69 \mathrm{~g}$, $4 \mathrm{mmol})$ and $\mathrm{Et}_{4} \mathrm{NCl}(0.40 \mathrm{~g}, 3 \mathrm{mmol})$ was added 30 ml of MeCN . The suspension was stirred for 24 h at room temperature and then filtered. The volume of the dark-red filtrate was reduced to 20 ml , and crystals formed over a period of two months.

## Crystal data

$\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)_{3}\right]-$
$\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)$
$M_{r}=1105.35$
Triclinic
$P \overline{1}$
$a=10.8058(3) \AA$
$b=11.1736$ (3) $\AA$
$c=16.7577(5) \AA$
$\alpha=93.700(1)^{\circ}$
$\beta=90.732(1)^{\circ}$
$\gamma=100.238(1)^{\circ}$
$V=1986.35(10) \AA^{3}$
$Z=2$
$D_{x}=1.848 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}$ not measured

## Data collection

Siemens SMART diffractometer

## $\omega$ scans

Absorption correction:
empirical (SADABS;
Sheldrick, 1996)
$T_{\text {min }}=0.563, T_{\text {max }}=0.811$
7717 measured reflections

## Refinement

Refinement on $F^{2}$
$R(F)=0.030$
$w R\left(F^{2}\right)=0.082$
$S=0.802$
5436 reflections
388 parameters
H atoms riding
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 6424 reflections
$\theta=1.86-23.25^{\circ}$
$\mu=1.743 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.40 \times 0.30 \times 0.12 \mathrm{~mm}$
Red-brown

5436 independent reflections 5084 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=23.25^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 9$
$l=-18 \rightarrow 18$
$\begin{aligned} w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0595 P)^{2}\right. \\ & +6.4177 P]\end{aligned}$
$\quad+6.4177 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

| Mol-S | 2.3845 (11) | Mo2-S4 | 2.4970 (12) |
| :---: | :---: | :---: | :---: |
| Mol-S5 | 2.3961 (11) | Mo2-S21 | 2.5126 (12) |
| $\mathrm{Mol}-\mathrm{Sl}$ | 2.4184 (11) | Mo2-Mo3 | 2.7277 (5) |
| Mol-S2 | 2.4703 (11) | Mo3-S | 2.3850 (11) |
| $\mathrm{Mol}-\mathrm{S} 12$ | 2.4991 (11) | Mo3-S5 | 2.3957 (11) |
| Mol-Sil | 2.5078 (12) | Mo3-S3 | 2.4167 (11) |
| Mol-S6 | 2.5096 (12) | Mo3-S32 | 2.4813 (12) |
| $\mathrm{Mol}-\mathrm{Mo} 2$ | 2.7140 (5) | Mo3-S4 | 2.4954 (12) |
| $\mathrm{Mol}-\mathrm{Mo} 3$ | 2.7268 (5) | Mo3-S6 | 2.5059 (12) |
| Mo2-S | 2.3873 (11) | Mo3-S31 | 2.5319 (12) |
| Mo2-S1 | 2.4033 (11) | S1-S2 | 2.112 (2) |
| Mo2-S3 | 2.4060 (11) | S3-S4 | 2.068 (2) |
| Mo2-S2 | 2.4645 (11) | S5-S6 | 2.037 (2) |
| Mo2-S22 | 2.4926 (12) |  |  |
| S12-Mol-S11 | 70.08 (4) | Mo3-S-Mo2 | 69.72 (3) |
| Mo2-Mol-Mo3 | 60.177 (13) | Mo2-S1-Mol | 68.51 (3) |
| S22-Mo2-S21 | 70.06 (4) | Mo2-S2-Mo1 | 66.73 (3) |
| Mol-Mo2-Mo3 | 60.144 (13) | Mo2-S3-Mo3 | 68.89 (3) |
| S32-Mo3-S31 | 69.80 (4) | $\mathrm{Mo} 3-\mathrm{S} 4-\mathrm{Mo} 2$ | 66.24 (3) |
| Mol-Mo3-Mo2 | 59.679 (13) | Mo3-S5-Mol | 69.37 (3) |
| Mol-S-Mo3 | 69.74 (3) | Mo3-S6-Mol | 65.87 (3) |
| $\mathrm{Mol}-\mathrm{S}-\mathrm{Mo} 2$ | 69.33 (3) |  |  |

Twofold disorder was refined for C35. Highly anisotropic displacement parameters for this atom and for C34 show that the model is only approximate.
Data collection: SMART (Siemens, 1996). Cell refinement: SAINT (Siemens, 1994a). Data reduction: SHELXTL (Siemens, 1994b). Program(s) used to solve structure: SHELXTL. Program(s) used to refine structure: SHELXTL. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXTL.

We are very grateful for financial support from the NNSF of China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1227). Services for accessing these data are described at the back of the journal.

## References

Dean, N. S., Folting, K., Lobkovsky, E. \& Christou, G. (1993). Angew. Chem. Int. Ed. Engl. 32, 594-596.
Fedin, V. P., Sokolov, M. N., Geras’ko, O. A., Virovets. A. V., Podberezskaya, N. V. \& Fedorov, V. Ye. (1991). Inorg. Chim. Acta, 187, 81-90.
Fedin, V. P., Sokolov, M. N., Virovets, A. V., Podberezskaya, N. V. \& Fedorov, V. Ye. (1991). Zh. Neorg. Khim. 36, 3089-3094.
Hegetchweiler, K., Keller, T., Bämle, M., Rihs, G. \& Schneider, W. (1991). Inorg. Chem. 30, 4342-4347.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Keck, H., Kuchen, W., Mathow, J., Meyer, B., Mottz, D. \& Wunderlich, H. (1981). Angew: Chem. Int. Ed. Engl. 20, 975-976.
Lu, S.-F., Wu, Q.-J., Chen, H.-B., Yu, R.-M. \& Huang, J.-Q. (1994). Chin. J. Struct. Chem. 10, 389-396.
Müller, A., Bhattacharyya. R. G. \& Pfefferkorn. B. C. (1979). Chem. Ber. 112, 778-791.
Shang, M.-Y., Huang, J.-L. \& Lu. J.-X. (1984). Sci. China B. 8. 687694.

Sheldrick, G. M. (1996). SADABS. Siemens Area Detector Absorption Correction Software. University of Göttingen. Germany.
Siemens (1994a). SAINT. Area Detector Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994b). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc.. Madison, Wisconsin, USA.

Siemens (1996). SMART. Area Detector Control Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Yang, Y., Liu, Q.-T. \& Wu, D.-X. (1993). Inorg. Chim. Acta, 208, 85-89.
Zimmermann, H.. Hegetchweiler. K.. Keller, T.. Gramlich. V.. Schmalle, H. W., Petter, W. \& Schneider, W. (1991). Inorg. Chem. 30. 4336-4341.

Acta Cryst. (1998). C54, 1275-1277

# Octakis(dimethyl sulfoxide-O)gadolinium(III) Hexacyanoferrate(III) 

Martti Klinga, ${ }^{a}$ Rafael Cuesta, ${ }^{b}$ José María Moreno, ${ }^{b}$ José Manuel Dominguez-Vera, ${ }^{b}$ Enrique Colacio ${ }^{b}$ and Raikko Kıvekäs ${ }^{a}$<br>${ }^{a}$ Laboratory of Inorganic Chemistry, Department of Chemistry, PO Box 55, FIN-00014 University of Helsinki, Finland, and ${ }^{b}$ Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain. E-mail: martti.klinga@helsinki.fi

(Received 18 December 1997; accepted 24 March 1998)


#### Abstract

In $\left[\mathrm{Gd}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{8}\right]\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, the central atom of the $\left[\mathrm{Gd}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{8}\right]^{3+}$ complex cation occupies a twofold axis, while in the $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ anion, it is positioned on a centre of inversion. $\mathrm{Gd}-\mathrm{O}$ bond lengths vary between 2.374 (5) and 2.417 (5) $\AA$, but the $\mathrm{Fe}-\mathrm{C}$ distances of $1.943(8)-1.952(8) \AA$ are equal, within experimental error.


## Comment

It is well known that hexacyanometallates can be successfully used as building blocks for constructing bimetallic assemblies which exhibit spontaneous magnetization. Two types of compounds have been prepared: (i) Prussian analogues, $A_{k} B(\mathrm{CN})_{6}$, where $A$ and $B$ are either two transition metals or rare-earth ions (Verdaguer, 1996; Khan, 1995; Hulliger et al., 1976), and (ii) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ combined with transition metal complexes (Salah el Fallah et al., 1996). In an attempt to prepare compounds of the latter type, a $\mathrm{Gd}^{\text {III }}$ complex of the Schiff base which is formed through the $2: 1$ condensation reaction of 2-pyridinecarboxaldehyde and ethylenediamine was combined with the $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ ion. It is noteworthy that, in the reaction conditions used, the Schiff base ligand and the water molecules coordinated to the $\mathrm{Gd}^{\text {III }}$ atom were replaced by dimethyl sulfoxide (DMSO) molecules, and well developed yellow crystals of the compound $\left[\mathrm{Gd}(\mathrm{DMSO})_{8}\right]\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, (I), were formed after five days. We report here the structure of this last compound, which consists of discrete $\left[\mathrm{Gd}(\mathrm{DMSO})_{8}\right]^{3+}$ and $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ ions. The $\mathrm{Gd}^{\mathrm{II}}$ atom occupies a twofold axis, while the $\mathrm{Fe}^{\text {III }}$ atom is positioned on a centre of inversion.


(I)


Fig. 1. View of $\left[\mathrm{Gd}(\mathrm{DMSO})_{8}\right]\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, showing the atomic labelling scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level and H atoms have been omitted for clarity.

